首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   184篇
  免费   9篇
  国内免费   9篇
测绘学   4篇
大气科学   12篇
地球物理   36篇
地质学   112篇
海洋学   5篇
天文学   28篇
综合类   1篇
自然地理   4篇
  2024年   1篇
  2022年   3篇
  2021年   8篇
  2020年   5篇
  2019年   2篇
  2018年   10篇
  2017年   5篇
  2016年   7篇
  2015年   7篇
  2014年   24篇
  2013年   23篇
  2012年   9篇
  2011年   20篇
  2010年   2篇
  2009年   1篇
  2008年   4篇
  2007年   2篇
  2006年   3篇
  2005年   3篇
  2004年   2篇
  2002年   3篇
  2001年   3篇
  2000年   4篇
  1999年   1篇
  1995年   3篇
  1994年   4篇
  1993年   4篇
  1992年   1篇
  1991年   4篇
  1990年   3篇
  1989年   2篇
  1988年   6篇
  1987年   5篇
  1986年   2篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1982年   4篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1968年   1篇
  1960年   1篇
排序方式: 共有202条查询结果,搜索用时 46 毫秒
31.
A salina system along the Mediterranean coast of Egypt was investigated. Five sedimentary facies are described. For each facies, the evaporitic sedimentation and the biological conditions are considered. Comparisons of evaporite precipitates in the salina with ancient deposits are made.  相似文献   
32.
33.
Climate change signals in Saudi Arabia are investigated using the surface air temperature (SAT) data of 19 meteorological stations, well distributed across the country. Analyses are performed using cumulative sum, cumulative annual mean, and the Mann–Kendall rank statistical test for the period of 1978–2010. A notable change in SAT for the majority of stations is found around 1997. The results show a negative temperature trend (cooling) for all stations during the first period (1978–1997), followed by a positive trend (warming) in the second period (1998–2010) with reference to the entire period of analysis. The Mann–Kendall test confirms that there is no abrupt cooling at any station during the analysis period, reflecting the warming trend across the country. The warming trend is found to be 0.06 °C/year, while the cooling trend is 0.03 °C/year, which are statistically significant.  相似文献   
34.
A systematic analysis of the winter North Atlantic eddy-driven jet stream latitude and wind speed from 52 model integrations, taken from the coupled model intercomparison project phase 3, is carried out and compared to results obtained from the ERA-40 reanalyses. We consider here a control simulation, twentieth century simulation, and two time periods (2046–2065 and 2081–2100) from a twenty-first century, high-emission A2 forced simulation. The jet wind speed seasonality is found to be similar between the twentieth century simulations and the ERA-40 reanalyses and also between the control and forced simulations although nearly half of the models overestimate the amplitude of the seasonal cycle. A systematic equatorward bias of the models jet latitude seasonality, by up to 7°, is observed, and models additionally overestimate the seasonal cycle of jet latitude about the mean, with the majority of the models showing equatorward and poleward biases during the cold and warm seasons respectively. A main finding of this work is that no GCM under any forcing scenario considered here is able to simulate the trimodal behaviour of the observed jet latitude distribution. The models suffer from serious problems in the structure of jet variability, rather than just quantitiative errors in the statistical moments.  相似文献   
35.
This work comprises a study of the sequence stratigraphy, seismic-facies analysis, biostratigraphy and depositional environments of the northern part of the Gulf of Suez, Egypt, using a set of 24 3D seismic profiles, composite logs and sonic logs from ten wells. The syn-rift formations in the studied ten wells are described lithologically and interpreted based on investigating two seismic profiles. Biostratigraphically, the Miocene fossils are identified to correlate the five planktonic foraminiferal biozones in the examined boreholes (RB-A1, RB-B1, RB-B3, EE85-2 and RB-C1). The sequence stratigraphic analysis suggests that the Miocene succession can be subdivided into two major third order depositional sequences (S1 and S2) separated by the three major sequence boundaries (DSB1, DSB2 and DSB3).  相似文献   
36.
The Cenozoic volcanism of western Saudi Arabia extends from southern Yemen to Jordan northward. They cover an area of nearly 180,000 km2. The rocks are dominated by alkali olivine basalts and olivine basalts. Al-Wahbah crater, a part of Harrat Kishb, represents a model occurrence to study the gneisses of these rocks. New mineral chemistry and isotopic data are presented. It aims to follow the isotopic, mineralogical, and thermobarometry variations among these volcanics. Amphiboles of the studied volcanics belong to the monoclinic calcic group. The chemistry of the amphibole crystals shows two ranges of pressure. They are 3.6–5.6 and 0.38–0.78 kbar. The Aliv values of the amphiboles are in the range of 1.202 and 1.407, indicating corresponding temperature condition of 820–920 and 620–720 °C, respectively. The feldspar of the studied samples has the composition of plagioclase, though some grains have sanidine composition. They are formed in temperature range of 975 and 400 °C. The coexisting amphiboles and plagioclases indicate two sets of pressure and temperature. They are 540–575 °C (3.5–4 kbar) and 510–525 °C (~2 kbar), respectively. Rb–Sr isochron of the whole rock yields an age of 0.867 ± 0.160 Ma with initial Sr87/Sr86 of 0.702 ± 0.00086. The low initial ratio of Sr87/Sr86 together with positive values of εNd today implies that the studied volcanics have mantle source. Meanwhile, the present isotopic data suggest extraction of juvenile magma from asthenosphere source. The present study shows that the Al-Wahbah crater rocks belong to Cenozoic basalts and indicate EM-I-like signature.  相似文献   
37.
Groundwater is a major source of water supply for domestic and irrigation uses in semiarid, remote but rapidly developing Kilasaifullah district part of Zhob River Basin, located at Pakistan–Afghanistan Border. Zhob River is among few major rivers of perennial nature in Balochistan, which flows from WSW to ENE and falls in Gomal River, a tributary of Indus River. Keeping in view the important geopolitical position and rapid development of the region, this study is primarily focused on groundwater chemistry for contamination sources as well as agriculture development. Water samples from open and tube wells are analyzed and calculated for electrical conductivity (EC), total dissolved solids (TDS), turbidity, pH, K+, Na+, Ca2+, Mg2+, HCO, Cl?, NO, SO, PO, sodium percent (Na%), sodium adsorption ratio (SAR), Kelly's index (KI), and heavy metals (Fe, Cu, Cr, Zn, Pb, and Mn). On the basis of the chemical constituents two zones within the study area are identified and possible causes of the contaminants are pointed out. Two recharge areas were responsible for the different chemical results in groundwater, e.g., zone A was recharged from NNW saline geological formations (Nisai, Khojak, Multana, Bostan formations, and Muslim Bagh ophiolites), which are concentrated with high sodium and chloride. On the other hand Zone B was sourced from SSW from carbonate rich rocks (Alozai, Loralai, Parh formations, and Muslim Bagh ophiolites). The groundwater is classified as C2–S1, C3–S1, C3–S2, C4–S2 on the basis of EC and SAR values which indicate that most of the water of both zones can be used for irrigation safely except the samples plotted in C3–S2 and C4–S2 categories which could be dangerous for soil and crops. Groundwater samples are plotted in good to permissible limits with some samples excellent to good and few samples belong to doubtful category based on sodium percent. Groundwater of zone A is unsuitable for irrigation use due to higher values of KI (more than one) but water of zone B are good for irrigation based on KI. In general, water of both zones is suitable for irrigation but care should be taken during the selection of crops which are sensitive to alkalinity or sodium hazards particularly in zone A.  相似文献   
38.
Multi-walled carbon nanotubes were used successfully for the removal of Copper(II), Lead(II), Cadmium(II), and Zinc(II) from aqueous solution. The results showed that the % adsorption increased by raising the solution temperature due to the endothermic nature of the adsorption process. The kinetics of Cadmium(II), Lead(II), Copper(II), and Zinc(II) adsorption on Multi-walled carbon nanotubes were analyzed using the fraction power function model, Lagergren pseudo-first-order, pseudo-second-order, and Elovich models, and the results showed that the adsorption of heavy metal ions was a pseudo-second-order process, and the adsorption capacity increased with increasing solution temperature. The binding of the metal ions by the carbon nanotubes was evaluated from the adsorption capacities and was found to follow the following order: Copper(II) > Lead(II) > Zinc(II) > Cadmium(II). The thermodynamics parameters were calculated, and the results showed that the values of the free energies were negative for all metals ions, which indicated the spontaneity of the adsorption process, and this spontaneity increased by raising the solution temperature. The change in entropy values were positives, indicating the increase in randomness due to the physical adsorption of heavy metal ions from the aqueous solution to the carbon nanotubes’ surface. Although the enthalpy values were positive for all metal ions, the free energies were negative, and the adsorption was spontaneous, which indicates that the heavy metal adsorption of Multi-walled carbon nanotubes was an entropy-driving process.  相似文献   
39.
In this study, combining interpretations of conservative dissolved ions and environmental isotopes in water were used to investigate the main factors and mechanisms controlling groundwater salinization and hydrogeochemical processes in the Eastern Nile Delta, Egypt. Hydrogeochemical and isotopic study has been carried out for 61 water samples from the study area. Total dissolved solid (TDS) contents of groundwater are highly variable rising along flowpath from the south (410 mg/L) to the north (14,784 mg/L), implying significant deterioration and salinization of groundwater. Based on TDS and ionic ratios, groundwater samples were classified into three groups. In low-saline groups, water chemistry is greatly influenced by cation exchange, mineral dissolution/precipitation, anthropogenic pollutants and mixing with surface water. Whilst, in high-saline groups, water chemistry is affected by salt-water intrusion, reverse cation exchange and evaporation. The chemical constituents originating from saline water sources, reverse ion exchange and mineral dissolution are successfully differentiated using ionic delta and saturation index approaches. The δ18O–δ2H relationship plots on a typical evaporation line, suggesting potential evaporation of the recharging water prior to infiltration. Isotope evidence concludes that the groundwater have been considerably formed by mixing between depleted meteoric water recharged under different climatic conditions and recently infiltrating enriched surface water and excess of irrigation water. The δ18O data in conjunction with chloride concentrations provide firm evidence for impact of dissolution of marine-origin evaporite deposits, during past geologic periods, on groundwater salinity in the northern region. Moreover, the relation between 14C activities and Cl? concentration confirms this hypothesis.  相似文献   
40.
The evaluation of agricultural sustainability status helps in identifying specific indicators that constrain the achievement of sustainable agriculture. The agricultural sector in Egypt is facing major sustainability constraints such as scarce land and water resources, environmental degradation, and rapid population growth as well as institutional arrangement including land tenure and farm fragmentation, agricultural administration, lack of infrastructure, and credit utilization and high interest rates. This study aims to evaluate the agricultural sustainability in some areas in Kafr El-Sheikh governorate, north of the Nile Delta; the international framework for evaluating sustainable land management was used for realizing this objective. The map of the physiographic soils of the studied area was produced depending upon Landsat ETM+ images analysis; the results indicate that the area includes three main landscapes, i.e., alluvial, lacustrine, and marine plains. The characteristics of productivity, security, protection, economic viability, and social acceptability in the different mapping units were assessed. The obtained results show that the studied area includes two different class types, the first are the lands that are marginally below the requirement of sustainability and the second are those lands that do not meet sustainability requirements. The former class is represented by the physiographic units of alluvial plain, whereas the latter class is represented by the physiographic units of the lacustrine and marine plains. The sustainability constrains in the studied area are related to the soil productivity, economic viability, and social acceptability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号